Preparation and Reactions of α, β-Unsaturated and Cross-conjugated Diene Thiones

By Derek H. R. Barton,* Lewis S. L. Choi, Robert H. Hesse, Maurice M. Pechet, and Colin Wilshire, Research Institute for Medicine and Chemistry, Cambridge, Mass. 02142

Abstract

$\Delta^{1,4}$-Diene-3-thiones were prepared from corticosterone-1,4-dien-3-ones and phosphorus pentasulphide. Reaction with diphenyldiazomethane or 2 -nitrobenzenesulphenyl chloride gave respectively the derived 3 -diphenyl-methylene- $\Delta^{1,5}$-dienes and 3 -(2-nitrobenzenesulphenylthio)- $\Delta^{1,3,5}$-trienes. The less stable steroid Δ^{4}-ene-3thiones were trapped with 2 -nitrobenzenesulphenyl chloride as 3 -(2-nitrobenzenesulphenylthio)- $\Delta^{3,5}$-dienes. Subsequent thiol exchange gave 3 -ethane- and 3 -benzene-sulphenylthio- $\Delta^{3,5}$-dienes. Warfarin and cyclocumarol were thionated with $\mathrm{P}_{4} \mathrm{~S}_{10}$ giving mono- and dithio-derivatives. Griseofulvin gave a stable enethione and thence with diphenyldiazomethane the diphenylmethylene derivative.

The $\Delta^{\mathbf{1 , 4}}$-dien-3-one unit of the corticosteroids is a structural feature of paramount importance for biological activity. The analogous $\Delta^{\mathbf{1 , 4}}$-diene-3-thiones would be a novel class of corticosteroids which may possess interesting activities. In addition the increased reactivity of the thione function should make these derivatives useful intermediates for further transformations. Thiones are available from ketones by reaction with hydrogen sulphide catalysed by acid ${ }^{1}$ or base ${ }^{2}$ or with phosphorus pentasulphide, ${ }^{3}$ silicon disulphide, ${ }^{4}$ or boron sulphide. ${ }^{4}$ Geminal dihalides, ${ }^{5}$ vinyl halides, ${ }^{6}$ imines, ${ }^{7}$ and sulphides ${ }^{8}$ are alternative precursors. Since corticosteroids are acid labile phosphorus pentasulphide was chosen for study. ${ }^{9}$

The dexamethasone derivative (la) reacted smoothly with phosphorus pentasulphide in pyridine to give a purple crystalline product. Combustion analysis and spectral data supported formulation as the thione (lb).

(1)
a; $\quad \mathrm{R}^{1}=\mathrm{HO}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{F}, \mathrm{R}^{4}=\mathrm{Me}, \mathrm{X}=\mathrm{O}$
b; $R^{1}=H O, R^{2}=H, R^{3}=F, R^{4}=M e, X=S$
c; $\mathrm{R}^{1} \mathrm{R}^{2}=\mathrm{X}=\mathrm{O}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$
d; $R^{1} R^{2}=O, R^{3}=R^{4}=H, X=S$
$\mathrm{e} ; \quad \mathrm{R}^{1} \mathrm{R}^{2}=\mathrm{O}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{X}=\mathrm{S}-\mathrm{O}$; syn
$\mathrm{f} ; \quad \mathrm{R}^{1} \mathrm{R}^{2}=\mathrm{O}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{X}=\mathrm{S}-\mathrm{O} ;$ anti
g; $\quad \mathbf{R}^{1} \mathbf{R}^{2}=O, R^{3}=\mathbf{R}^{4}=\mathbf{H}, \mathrm{X}=\mathbf{H}_{\mathbf{2}}$

(2)
a; $R^{1}=H O, R^{2}=R^{5}=H, R^{3}=F, R^{4}=M e$
b; $R^{1} R^{2}=O, R^{3}=R^{4}=H, R^{5}=E t$

Absence of the thiol function (i.r.), the presence of only three vinyl protons (n.m.r.), and the u.v. spectrum discounted the alternative trienethiol structure (2a).

(3)
a; $R^{1}=\mathrm{HO}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{COCH}_{2} \mathrm{OCOEt}$,
$\mathrm{R}^{4}=\mathrm{OCOEt}, \mathrm{X}=\mathrm{O} ; 9 \alpha-\mathrm{F}, 16 \beta-\mathrm{Me}$
$\mathrm{b} ; \mathrm{R}^{1}=\mathrm{HO}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{COCH}_{2} \mathrm{OCOEt}$,
$\mathrm{R}^{4}=$ OCOEt, $\mathrm{X}=\mathrm{S} ; 9 \alpha$-fluoro; 16β-Me
c; $\quad \mathrm{R}^{1}=\mathrm{HO}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}(=\mathrm{O})\left(\mathrm{CH}_{2} \mathrm{OC}(\mathrm{Me})_{2} \mathrm{O}, \mathrm{X}=\mathrm{O}\right.$
$\mathrm{d} ; \mathrm{R}^{1}=\mathrm{HO}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2} \mathrm{OC}(\mathrm{Me})_{2} \mathrm{O}, \mathrm{X}=\mathrm{S}$
e; $\mathrm{R}^{1}=\mathrm{R}^{4}=\mathrm{HO}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{COCH}_{2} \mathrm{OAc}, \mathrm{X}=\mathrm{O}$
f; $\quad \mathrm{R}^{1}=\mathrm{R}^{4}=\mathrm{HO}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{COCH}_{2} \mathrm{OAc}, \mathrm{X}=\mathrm{S}$
g; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{X}=\mathrm{O}$
$\mathrm{h} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{O}, \mathrm{X}=\mathrm{S}$
i; $\quad \mathbf{R}^{1}=\mathbf{R}^{2}=\mathbf{R}^{4}=\mathbf{H}$,
$\mathrm{R}^{3}=\mathrm{CH}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CHMe}_{2}, \mathrm{X}=\mathrm{O} ;$ 6,7-didehydro
j; $\quad R^{1}=R^{2}=R^{4}=H$,
$\mathrm{R}^{3}=\mathrm{CH}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CHMe}_{2}, \mathrm{X}=\mathrm{S} ; 6,7$-didehydro
$\mathrm{k} ; \quad \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{O}, \mathrm{X}=\mathrm{CPh}_{2}$
1; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{O}, \mathrm{X}=-\mathrm{SCPh}_{2} \mathrm{~N}_{2}-$
$\mathrm{m} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{O}, \mathrm{X}=-\mathrm{SC}\left(\mathrm{Ph}_{2}\right)^{-}$
$\mathrm{n} ; \mathrm{R}^{1}=\mathrm{HO}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2} \mathrm{OC}(\mathrm{Me})_{2} \mathrm{O}, \mathrm{X}=\mathrm{CPh}_{2}$
o; $\mathrm{R}^{1}=\mathrm{R}^{4}=\mathrm{HO}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{COCH}_{2} \mathrm{OAc}, \mathrm{X}=\mathrm{CPh}_{2}$
$\mathrm{p} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{H}$,
$\mathrm{R}^{3}=\mathrm{CH}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CHMe}_{2}, \mathrm{X}=\mathrm{CPh}_{2} ; 6,7$-didehydro
Similarly, the ketones ($3 \mathrm{a}, \mathrm{lc}$, and $3 \mathrm{c}, \mathrm{e}, \mathrm{g}$, and i) gave the derived thiones ($3 \mathrm{~b}, 1 \mathrm{~d}$, and $3 \mathrm{~d}, \mathrm{f}, \mathrm{h}$, and j , respectively).

Clearly non-conjugate ketones, carboxylic esters, ketals, and bismethylenedioxy functions were compatible with phosphorus pentasulphide. Free hydroxy functions, although hindered ($11 \beta, 17 \alpha$), were detrimental to yield. The dienethiones were stable and neither appreciably enolised, readily oxidised by air, nor hydrolysed at pH 7.

Dienethione (ld) was oxidised by 3 -chloroperoxybenzoic acid to two yellow isomeric dienethione S-oxides (le and f) sensitive to light. The products rapidly interconverted on attempted chromatography. Formulation as the S-oxides (le and f) was consistent with analysis, spectral data, and the formation of the $\Delta^{\mathbf{1 , 4}}$-dien- 3 -one (lc) on irradiation. Alternatively, dienethione (ld) was
ethylated by triethyloxonium tetrafluoroborate giving the air-sensitive trienethiol ether (2b).

Very hindered olefins have been prepared by the condensation of non-enolised thiones and diazoalkanes. ${ }^{10}$ Pyrolysis of the intermediate 1,3,4-thiadiazolines and subsequent desulphurisation gave the olefins in high yield. The reaction should be applicable to the preparation of cross conjugated olefins from the corticosteroid dienethiones. Thione (3 h) reacted readily with diphenyldiazomethane with discharge of colour. Formulation of the product as the 3 -diphenylmethylene steroid (3 k) (88%) followed from analysis and spectral data. Cross-conjugation was consistent with the n.m.r. (3 vinyl protons) and u.v. spectra. Presumably, formation of the extended conjugation diminished the stability of the intermediate $1,3,4$-thiadiazoline (31) and thiiran (3m); these were not observed. Similarly, thiones (3 d , f , and j) were converted into the derived 3 diphenylmethylene steroids ($3 \mathrm{n}, \mathrm{o}$, and p). Although cholesta-1,4,6-triene-3-thione ($\mathbf{3 j}$) could not be obtained, analytically pure 3 -diphenylmethylenecholesta-1,4,6triene (3p) was completely characterised.

Alper has described ${ }^{11}$ the desulphurisation of diaryl thiones and adamantanethione using the hydridotetra-carbonylferrate(-II) anion. When applied to the prednisone thione (ld) this reduction gave a complex mixture. Chromatography gave the expected novel skipped diene ($\mathbf{l g}$) (12%). The u.v. spectrum discounted an alternative conjugated system.

The thione function is a soft nucleophile ${ }^{12}$ and, as expected, dienethione (3b) was inert towards the hard toluene-4-sulphonyl chloride or methanesulphonyl chloride. In contrast dienethione (3 b) rapidly reacted with the soft 2 -nitrobenzenesulphenyl chloride giving a yellow product. The mass spectrum and analysis were consistent with a composition of $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}_{2}$. The n.m.r. and u.v. spectra were in full agreement with the structure of the triene disulphide (4a). The generality of the reaction was demonstrated by the preparation of disulphides (4 b and c). In these examples the hard

(4)
a; $R^{1}=\mathrm{HO}, \mathrm{R}^{2}=\mathrm{F}, \mathrm{R}^{3}=\mathrm{COCH}_{2} \mathrm{OCOEt}, \mathrm{R}^{4}=\mathrm{OCOEt}$,

$$
\mathrm{R}^{5}=\mathrm{Me}
$$

b; $\mathrm{R}^{1}=\mathrm{HO}, \mathrm{R}^{2}=\mathrm{R}^{5}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{COCH}_{2} \mathrm{OAc}, \mathrm{R}^{4}=\mathrm{HO}$
c; $R^{1}=R^{2}=R^{5}=H, R^{3}, R^{4}=O$
nucleophilic hydroxy functions were not able to compete with the thione functions.

In an attempt to trap the dienethione (3 h) during the thionation of dienone (3 g), an excess of 2 -nitrobenzene-
sulphenyl chloride was added with the phosphorus pentasulphide. Two new compounds $\left(\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}_{2}\right)$ and $\left(\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClNO}_{3} \mathrm{~S}_{2}\right)$ were formed instead of disulphide (4c). The less polar product was formulated as the diaryl disulphide (5). The n.m.r. spectrum showed an aryl

(5)

(6)
methyl resonance ($\delta 2.12$) replacing the original $\mathrm{C}-10$ methyl signal, and six aromatic and no vinyl protons. Since the two aromatic protons at $\delta 6.8$ and 7.18 were ortho ($J 8 \mathrm{~Hz}$) this ruled out alternative structures. Most plausibly the other product was the 1 -chlorodiene (6). This structure was consistent with the presence of $\Delta^{3,5}$ (u.v., n.m.r.) and only the 2 -nitrobenzenesulphenyl aromatic protons. The proton α to chlorine was clearly not also allylic ($\delta 4.22$) and was assigned to $\mathrm{Cl}-\mathrm{H}$ with $\mathrm{C} 2-\mathrm{H}_{2}$ at $\delta 2.83$. These products (5) and (6) were derived from disulphide (4c) with respective dienonephenol type isomerisation and hydrogen chloride addition.

(7)
a; $\mathrm{R}^{1}=\mathrm{CH}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CHMe}_{2}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=\mathrm{S}, \mathrm{Y}=\mathrm{H}_{2}$
b; $\mathrm{R}^{1}=\mathrm{OAc}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=\mathrm{O}, \mathrm{Y}=\mathrm{H}_{2}$
c; $\mathrm{R}^{1}=\mathrm{OAc}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=\mathrm{S}, \mathrm{Y}=\mathrm{H}_{2}$
d; $\mathrm{R}^{1} \mathrm{R}^{2}=\mathrm{Y}=\mathrm{X}=\mathrm{O}$
e; $\mathrm{R}^{1} \mathrm{R}^{2}=\mathrm{Y}=\mathrm{O}, \mathrm{X}=\mathrm{S}$
Although several simple alicyclic enethiones ${ }^{13}$ have been prepared, cholest-4-ene-3-thione (7a) ${ }^{14}$ remains the only characterised steroidal example. Reaction of testosterone acetate (7 b) or androst-4-ene-3,11,17-trione (7d) with phosphorus pentasulphide gave the unstable derived enethiones (7 c and e). Since neither could be isolated, the thionation was repeated in the presence of 2 -nitrobenzenesulphenyl chloride. The enethiones were trapped in situ giving the expected diene disulphides (8 a and b). The u.v. spectra ruled out the alternative $\Delta^{2,4}$ isomers. Since the products were dienes, complications arising from skeletal rearrangements did not take place. Again the 11 and 17 ketone functions were stable to the thionation reaction conditions. Further treatment of the diene disulphide (8b) with 2 -nitrobenzene sulphenyl chloride and phosphorus pentasulphide gave a new product with the intact 11,17dione. In this case, the sulphenyl chloride reacted with
the diene giving the 6 -(2-nitrobenzenesulphenyl) derivative (8 c). The u.v. $\left[\lambda_{\text {max. }} 242(\varepsilon 22000)\right.$ and 275 nm $(16000)]$ and n.m.r. $[6.93(1 \mathrm{H}, \mathrm{s})]$ spectra were consistent with 6 - rather than 4 -substitution.

Thiol-disulphide exchange is a well known process. ${ }^{15}$ The diene disulphides (8a and b) reacted with ethane-

(8)

thiol or benzenethiol to give the exchanged disulphides ($8 \mathrm{~d}, \mathrm{e}, \mathrm{f}$, and g) in good yields. The structures were all in good agreement with analyses and spectral data. It is conceivable that analogously diene disulphide (8 b) would react with 11,17-dioxoandrost-4-ene-3-thione (7e) to give the symmetrical disulphide (9a). Surprisingly, reaction in the presence of triethylamine gave a new product, although little disulphide (8 b) was consumed. Chromatography gave the product $\left(\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{~S}\right)$. The structure was symmetrical (simple n.m.r.), the $11,17-$ dione intact (1750 and $1720 \mathrm{~cm}^{-1}$), and $\Delta^{3,5}$ was present

(n.m.r.). Clearly, the product was the sulphide (9b), presumably formed by a dienethiol enethione condensation. The product was also formed from enethione (7e) and triethylamine alone.
Some coumarin derivatives, including warfarin (10a),

(10)

[^0]dicoumarol (11), and their derivatives, are powerful anticoagulants. In a search for compounds with improved activities, it was relevant to examine thione analogues. 4-Methoxy-4-methyl-2H-1-benzopyran-2one (10 b) was treated with phosphorus pentasulphide in toluene at $70{ }^{\circ} \mathrm{C}$. Analysis, spectral data, and hydrolysis of the product to the parent pyranone (10b) with mercuric acetate were all consistent with formulation as the thione (10 c). Dean has reported ${ }^{4}$ that the pyran-2-one derivative (10 d) and boron sulphide give a complex mixture resulting from loss of the 4 -methoxy group. Presumably, introduction of the 3-methyl group in the analogue (10b) introduced sufficient steric hindrance and thus permitted clean thionation.

Cyclocumarol (12a) and phosphorus pentasulphide

(11)

(12)

$$
\begin{array}{ll}
\mathrm{a} ; & \mathrm{R}=\mathrm{OMe} \\
\mathrm{~b} ; & \mathrm{R}=\mathrm{SH}
\end{array}
$$

gave three novel heterocyclic compounds (A), (B), and (C) which were separated by careful chromatography. All three lacked carbonyl, methoxy, and C-3 methylene functions but contained a vinyl methyl and vinyl proton. High resolution mass spectra and microanalyses gave compositions for (A) and (B) of $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{OS}_{2}$ and for (C) $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$. Isomers (A) and (B) were assigned as compounds (13a) and (14a), respectively. The uniquely low field proton resonance ($\delta 8.37-8.57$) in the n.m.r. spectrum of (A) was consistent with the aromatic proton deshielded by the adjacent thione function. In addition, mercuric acetate hydrolysis of (A) and (B) gave the carbonyl analogues (13b) and (14b) ($\nu_{\max } 1640$ and 1710

(13)

$$
\begin{aligned}
& \mathrm{a} ; \mathrm{X}=\mathrm{Y}=\mathrm{S} \\
& \mathrm{~b} ; \mathrm{X}=\mathrm{O}, \mathrm{Y}=\mathrm{S} \\
& \mathrm{c} ; \mathrm{X}=\mathrm{S}, \mathrm{Y}=\mathrm{O}
\end{aligned}
$$

(14)
a; $\mathrm{X}=\mathrm{Y}=\mathrm{S}$
b; $\mathrm{X}=\mathrm{O}, \mathrm{Y}=\mathrm{S}$
c; $\mathrm{X}=\mathrm{S}, \mathrm{Y}=\mathrm{O}$
d; $\mathrm{X}=\mathrm{Y}=\mathrm{O}$
cm^{-1}) respectively. The differences in the n.m.r. spectra of (A) and (B) and their respective hydrolysis products were consistent with the known ${ }^{16}$ larger deshielding effect of a thiocarbonyl compared with a carbonyl function. The most polar fraction (C) was a thione (i.r. and u.v. spectra). The n.m.r. spectrum with the absence of a uniquely low field aromatic proton suggested formulation as the thione (14c) rather than (13c). Mercuric acetate hydrolysis of (C) gave the sulphur-free analogue (14 d) ($\nu_{\text {max. }} 1720 \mathrm{~cm}^{-1}$).

Cyclocumarol (12a) and phosphorus pentasulphide gave initially. (t.l.c.) a colourless product. Analysis and spectral data were consistent with the benzopyranone derivative (14d) presumably formed via the acidcatalysed elimination of methanol. This intermediate (14d) was further converted into (C) (14c) and subsequently into (A) (13a) and (B) (14a). Under the reaction conditions (A) and (B) did not interconvert. Presumably (A) and (B) were formed via transient ring opened species. Warfarin (10a) with phosphorus pentasulphide gave the same three products (A), (B), and (C) via the intermediacy of the benzopyranone derivative (14d). During the isolation of intermediate (14d) from warfarin (10a), a thiol (v $v_{\text {max. }} 2560 \mathrm{~cm}^{-1}, \delta 2.77, \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$) was obtained in small yield. The n.m.r. spectrum exhibited an ABX multiplet centred at $\delta 2.31$ and 4.1; consistent with the product being the thiol (12b). To verify the requirement for an initial acid-catalysed step warfarin (10a) was treated with phosphorus pentaoxide to give the same pyranone derivative (14d).

Dean has reported that the pyranopyranone derivative (15a) gave the monothione (15 b) with freshly

(16)
(15)

$$
\begin{aligned}
& \mathrm{a} ; \mathrm{X}=\mathrm{Y}=\mathrm{O} \\
& \mathrm{~b} ; \mathrm{X}=\mathrm{S}, \mathrm{Y}=\mathrm{O} \\
& \mathrm{c} ; \mathrm{X}=\mathrm{Y}=\mathrm{S}
\end{aligned}
$$

prepared silicon disulphide ${ }^{4}$ but the oxadithiapentalene (16) with aged reagent. Since sulphur is more bulky than oxygen, the authors argued the dithione (15c) formation was less favourable than ring cleavage giving the pentalene derivative (16). Consistent with this, replacement of the thione function (van der Waals

(18)
(17)

$$
\begin{array}{ll}
\text { a; } \mathrm{X}=\mathrm{S}, \mathrm{Y}=\mathrm{O}, \mathrm{R}=\mathrm{Me} & \mathrm{a} ; \mathrm{X}=\mathrm{S} \\
\mathrm{~b} ; \mathrm{X}=\mathrm{Y}=\mathrm{O}, \mathrm{R}=\mathrm{H} & \mathrm{~b} ; \mathrm{X}=\mathrm{O} \\
\mathrm{c} ; \mathrm{X}=\mathrm{Y}=\mathrm{S}, \mathrm{R}=\mathrm{H} &
\end{array}
$$

radius $1.9 \AA$) by a methyl group ($2.0 \AA$) also prevented further thionation of monothione (17a) although the unhindered pyranopyrone (17b) gave a mixture of products including dithione (17 c). ${ }^{4}$ In the present study, the non-hindered carbonyl (models) of the benzopyranone (14d) was clearly being rapidly thionated.

Attempts to thionate dicoumarol (11) with phosphorus pentasulphide gave a coloured intractable mixture. Possibly intermolecular condensations were taking place.

4-Hydroxy-2 H -1-benzopyran-2-one (10 e) reacted with phosphorus pentasulphide to give an orange dimeric product $\left(\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}_{3}\right)$. Clearly, the product was symmetrical (n.m.r.) and was assigned as the sulphide (18a). This was confirmed by 3 -chloroperoxybenzoic acid or mercuric acetate oxidation giving the analogous dicarbonyl compound (18 b) $\left(\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}\right)$.

Griseofulvin (19a), an antifungal antibiotic, possesses an α, β-unsaturated carbonyl function. Reaction with phosphorus pentasulphide in benzene gave the derived thione (19b). Again, the tautomeric dienethiol (20) was not formed (n.m.r., i.r.). As expected, the product (19b) reacted with diphenyldiazomethane to give two

(19)
a; $X=O$
c; $\mathrm{X}=-\mathrm{CPh}_{2}-\mathrm{S}-$
$\mathrm{d} ; \mathrm{X}=\mathrm{CPh}_{2}$

(20)
products. The major product $\left(\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{ClO}_{5} \mathrm{~S}\right)$ was clearly one of the epimeric thiirans (19c). Subsequent treatment of this product with triphenylphosphine or pyrolysis $\left(190{ }^{\circ} \mathrm{C}\right)$ gave the expected olefin (19 d). The less polar product was inhomogeneous. By comparison with an authentic sample, the product was considered to be a mixture of olefin (19d) and the other thiiran (19c) epimer.

Phosphorus pentasulphide is clearly a useful reagent for the conversion of labile unsaturated ketones unto the thione analogues. The reaction should find wide application in the synthesis of potentially biologically active compounds.

EXPERIMENTAL

M.p.s were determined on a Kofler hot stage. Infrared, ultra violet, and n.m.r. spectra were recorded for solutions in chloroform, methanol, and deuteriochloroform, respectively, unless stated to the contrary. Preparative layer chromatography (p.l.c.) was carried out on Analtech GF silica gel.
9α-Fluoro-11 β-hydroxy-16 α-methyl-17 $\alpha, 20 ; 20,21$-bis-
methylenedioxypregna-1,4-diene-3-thione (1b).-The dienone (1a) (1.0 g), phosphorus pentasulphide (150 mg), and pyridine (15 ml) were stirred at $90^{\circ} \mathrm{C}$ for 1 h under argon. The solution was cooled and filtered and dichloromethane (100 ml) was added. The purple solution was washed with dilute hydrochloric acid ($2 \times 100 \mathrm{ml}$) and aqueous sodium hydrogen carbonate, dried, and evaporated. The residue in dichloromethane was filtered off through Florisil to give
the dienethione (1 b) ($290 \mathrm{mg}, 28 \%$), m.p. 212° (dec) (from dichloromethane-hexane), $\nu_{\text {max }}(\mathrm{KBr}) 3500$ and $1630 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }}(\mathrm{MeCN}) 331(\varepsilon 17900)$ and $580 \mathrm{~nm}(25), \delta 1.0(3 \mathrm{H}, \mathrm{d}$, $J 6 \mathrm{~Hz}, 16-\mathrm{Me}), 1.2(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.6(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{Me}), 4.0$ $(2 \mathrm{H}, \mathrm{s}, 21-\mathrm{H}), 4.3 \mathrm{br}(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}, 11 \alpha-\mathrm{H}), 4.9-5.3$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.9 \mathrm{br}(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$, and $7.2(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$, $2-\mathrm{H}$), $m / e 450\left(M^{+}\right)$(Found: C, 63.85; H, 6.65; S, 7.25. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{FO}_{5} \mathrm{~S}$ requires $\left.\mathrm{C}, 63.95 ; \mathrm{H}, 6.95 ; \mathrm{S}, 7.2 \%\right)$. Further elution of the column gave the dienone (1a) (205 mg).
9α-Fluoro-11 β-hydroxy-16 β-methyl-17 α,21-dipropionyl-oxy-3-thioxopregna-1,4-dien-20-one (3b).—The dienone (3a) $(1.0 \mathrm{~g})$ in pyridine $(15 \mathrm{ml})$ was stirred with phosphorus pentasulphide ($2 \times 100 \mathrm{mg}$) for 45 and 90 min , respectively, under argon to give the dienethione (3 b) ($200 \mathrm{mg}, 19 \%$), as blue plates, m.p. 113° (from dichloromethane-hexane), $v_{\text {max. }}(\mathrm{KBr}) 3570,1735$, and $1635 \mathrm{~cm}^{-1}, \lambda_{\text {max. }}(\mathrm{MeCN}) 330 \mathrm{~nm}$ ($\varepsilon 19000$) and $575 \mathrm{~nm}(24), \delta 1.0(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.6(3 \mathrm{H}$, $\mathrm{s}, 10-\mathrm{Me}), 4.5 \mathrm{br}(1 \mathrm{H}, \mathrm{m}, 11 \alpha-\mathrm{H}), 4.6(2 \mathrm{H}, \mathrm{ABq}, J 16 \mathrm{~Hz}$, $21-\mathrm{H}), 6.9 \mathrm{br}(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$, and $7.0(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{and} 2-\mathrm{H}), m / e$ $498\left(M^{+}\right)$(Found: C, 64.75; H, 7.2; S, 6.0. $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{FO}_{8} \mathrm{~S}$ requires $\mathrm{C}, 64.6 ; \mathrm{H}, 7.15$; S, 6.15%).

17 20 20;20,21-Bismethylenedioxy-3-thioxopregna-1,4-dien-11-one (1d).-The dienedione (1c) (4.0 g), phosphorus pentasulphide (4.0 g), and toluene (40 ml) were stirred under argon at $70{ }^{\circ} \mathrm{C}$ for 4 h . The mixture was cooled and filtered and the solids leached with toluene (15 ml). The filtrate was evaporated and chromatographed on Florisil (eluant dichloromethane) to give the dienethione (1d) (3.0 g , 72%), m.p. 184-187 ${ }^{\circ}$ (from dichloromethane-hexane), $\nu_{\text {max. }}(\mathrm{KBr}) 1710$ and $1630 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }}(\mathrm{MeCN}) 330(\varepsilon 19500)$ and $565 \mathrm{~nm}(20), \delta 0.9(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.5(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{Me})$, $4.0(2 \mathrm{H}, \mathrm{s}, 21-\mathrm{H}), 5.0-5.4\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.8-7.0$ $(2 \mathrm{H}, \mathrm{m}, 2$ - and $4-\mathrm{H})$, and $7.5(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}, 1-\mathrm{H}), m / e$ $416\left(M^{+}\right)$(Found: C, 66.4; H, 6.7; S, 7.45. $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 66.3 ; \mathrm{H}, 6.8 ; \mathrm{S}, 7.7 \%$).
$11 \beta-H y d r o x y-17 \alpha, 21-[(1-m e t h y l e t h y l i d e n e)$ dioxy $]$-3-thioxo-pregna-1,4-dien-20-one (3d).-The dienedione (3c) ${ }^{17}$ (1.21 g), phosphorus pentasulphide (1 g), toluene (50 ml), and chloroform (20 ml) were stirred at $75{ }^{\circ} \mathrm{C}$ for 6 h under argon. The mixture was filtered and the residue extracted with dichloromethane ($2 \times 15 \mathrm{ml}$). The combined filtrates were concentrated and chromatographed on Florisil (argon) to give (eluant chloroform) the purple dienethione (3d) (258 mg , 20%), m.p. 163-165 ${ }^{\circ}$ from methanol, $\nu_{\text {max. }} 3700,3000$, $1725,1635,1185,1120$, and $1030 \mathrm{~cm}^{-1}, \lambda_{\max } 332 \mathrm{~nm}(\varepsilon$ 19000), $\delta 0.93(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.41\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 1.49(3 \mathrm{H}$, $\mathrm{s}, 10-\mathrm{Me}), 4.17(2 \mathrm{H}, \mathrm{ABq}, J 18 \mathrm{~Hz}, 21-\mathrm{H}), 4.5 \mathrm{br}(1 \mathrm{H}, \mathrm{s}$, $11 \alpha-\mathrm{H}), 6.92(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 2-\mathrm{H})$, and $7.02(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $m / e 416 M^{+}$) (Found: C, 69.3; H, 7.5; S, 7.9. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 69.2 ; \mathrm{H}, 7.75 ; \mathrm{S}, 7.7 \%$).

11 $\beta, 17 \alpha$-Dihydroxy-20-oxo-3-thioxopregna-1,4-dien-21-yl Acetate (3f).-Prednisolone 21-acetate (3e) (1.03 g) and phosphorus pentasulphide 1.0 g) in pyridine (20 ml) and benzene (60 ml) were stirred at $75{ }^{\circ} \mathrm{C}$ for 6 h under argon. The mixture was cooled and dichloromethane (80 ml) was added. Filtration and evaporation gave a purple residue which was chromatographed on Florisil (argon) (eluant ethyl acetate-dichloromethane $1: 19$) to give the purple 3 -thioxoprednisolone 21 -acetate (3 f) ($250 \mathrm{mg}, 25 \%$), m.p. $169-171^{\circ}$ (dec) (from acetonitrile) $\nu_{\text {max. }} 3750,3600$, $3000,1750,1730,1630,1240,1120$, and $1050 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }} 334 \mathrm{~nm}(\varepsilon 22000), \delta 0.97(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.47(3 \mathrm{H}, \mathrm{s}$, $10-\mathrm{Me}), 2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 4.4(1 \mathrm{H}, \mathrm{m}, 11 \alpha-\mathrm{H}), 4.97(2 \mathrm{H}$, ABq, $J 18 \mathrm{~Hz}, 21-\mathrm{H}), 6.92(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 2-\mathrm{H})$, and 7.02 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), m/e $418\left(M^{+}\right)$(Found: C, 63.5; H, 7.05;
$\mathrm{S}, 7.05 . \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~S} . \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 63.3$; $\mathrm{H}, 7.4$; S , 7.35%).

3-Thioxoandrosta-1,4-dien-17-one (3h).—Androsta-1,4-diene-3,17-dione (3 g) (570 mg), phosphorus pentasulphide (650 mg), and benzene (20 ml) were stirred at $70^{\circ} \mathrm{C}$ for 6 h under argon. The mixture was filtered and the residue washed with dichloromethane ($2 \times 10 \mathrm{ml}$). Evaporation gave a purple residue which was chromatographed on Florisil (argon) (eluant ethyl acetate-dichloromethane $1: 99)$ to give the dienethione (3 h) ($425 \mathrm{mg}, 71 \%$), m.p. $163-165{ }^{\circ} \mathrm{C}\left(\right.$ from $\left.\mathrm{CCl}_{4}\right)$) $\nu_{\text {max. }} 3000,1750,1635,1160$, and $1140 \mathrm{~cm}^{-1}, \lambda_{\max } 330 \mathrm{~nm}(\varepsilon 19000), \delta 0.88(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me})$, $1.27(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{Me})$, and $6.77(3 \mathrm{H}, \mathrm{m}, 1-, 2-$, and $4-\mathrm{H}), m / e$ $300\left(M^{+}\right)$(Found: C, 75.95; H, 7.95; S, 10.3. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{OS}$ requires $\mathrm{C}, \mathbf{7 5 . 9 5} ; \mathrm{H}, 8.05 ; \mathrm{S}, 10.65 \%$).

Cholesta-1,4,6-triene-3-thione (3j).-Cholesta-1,4,6-trien-3one (3i) ${ }^{18}(765 \mathrm{mg})$, phosphorus pentasulphide $(800 \mathrm{mg})$, and benzene (15 ml) were stirred at $25^{\circ} \mathrm{C}$ for 24 h under argon. The mixture was filtered and the residue washed with benzene ($2 \times 10 \mathrm{ml}$). The concentrated filtrates were chromatographed on Florisil (argon) to give the thione (3j) as an unstable green foam ($302 \mathrm{mg}, 38 \%$), $\nu_{\text {max. }} 3000,1635$, 1470,1385 , and $1170 \mathrm{~cm}^{-1}$, $\lambda_{\max }$. (hexane) $354 \mathrm{~nm}(\varepsilon$ $16800)$, $\delta 0.8(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 0.83$ and $0.93(9 \mathrm{H}, 2 \mathrm{~s}, 20-$ Me and $25-\mathrm{Me}_{2}$), $1.23(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{Me}), 6.2(2 \mathrm{H}, \mathrm{m}, 6$ and $7-$ $\mathrm{H})$, and $6.73-6.83(3 \mathrm{H}, \mathrm{m}, 1-, 2-$, and $4-\mathrm{H}), m / e 396$ $\left(M^{+}\right)$.

17 $\alpha, 20 ; 20,21-$ Bismethylenedioxy-3-thioxopregna-1,4-dien-11-one S-Oxide (le, f).-3-Chloroperoxybenzoic acid (50 mg , 1 equiv.) was added to the dienethione (1d) (104 mg) in dichloromethane (10 ml). The solution was washed with aqueous sodium hydrogen carbonate and water, dried, and evaporated to leave a yellow solid (two components by t.l.c.). After separation by p.l.c. the two separate isomers rapidly re-equilibrated. Recrystallisation gave the isomeric mixture of dienethione S-oxides (le, f), m.p. 204° (dec), $[\alpha]_{\mathrm{D}}+130^{\circ}$ (c 1.25, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), $\nu_{\text {max. }}$ (KBr) 1705 and $1630 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }}(\mathrm{MeCN}) 358 \mathrm{~nm}(\varepsilon 16000), \delta 0.8(3 \mathrm{H}, \mathrm{s}$, $13-\mathrm{Me}), 1.4(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{Me}), 4.0(2 \mathrm{H}, \mathrm{s}, 21-\mathrm{H}), 5.0(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right)$, and $6.2-7.2(3 \mathrm{H}, \mathrm{m}, 1-, 2-$, and $4-\mathrm{H}), m / e 432$ $\left(M^{+}\right)$(Found: C, 63.7; H, 6.4; S, 7.5. $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}$ requires C, 63.85 ; H, 6.55 ; S, 7.4%).

Conversion of Dienethione S-Oxide (1e, f) into Ketone (1c).The S-oxide ($1 \mathrm{e}, \mathrm{f}$) $(100 \mathrm{mg})$ in dichloromethane was irradiated by a 1.5 kW photoflood lamp for 1 h . Evaporation and recrystallisation from methanol-dichloromethane gave only ketone (lc) (n.m.r., t.l.c.). The S-oxide (le, f) in dichloromethane was stable in the dark.

Alkylation of Dienethione (1d).-The dienethione (1d) $(160 \mathrm{mg})$ and 4 A molecular sieves in dichloromethane were stirred at room temperature under argon. After 1 h triethyloxonium tetrafluoroborate in dichloromethane (1m; 0.4 ml) was added. After $2 \mathrm{~h} 1,8$-bisdimethylaminonaphthalene (60 mg) was added to the deep red solution. After 10 min the colourless solution was washed with dilute hydrochloric acid and water, dried, and evaporated. Chromatography on Florisil (eluant dichloromethane), and crystallisation from cold dichloromethane-hexane (argon) gave 3 -ethylthio- $17 \alpha, 20 ; 20,21$-bismethylenedioxy-pregna-1,3,5-trien-11-one (2b), m.p. 183 ${ }^{\circ}$ (sealed tube), $\nu_{\text {max. }}(\mathrm{KBr}) 1700 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }}(\mathrm{MeCN}) 326 \mathrm{~nm}(\varepsilon 6400)$, $\delta 0.8(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.25\left(3 \mathrm{H}, t, J 7 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.3$ $(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{Me}), 2.75\left(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 4.0(2 \mathrm{H}$, $\mathrm{s}, 21-\mathrm{H}), 5.0-5.2\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.3-5.8(3 \mathrm{H}, \mathrm{m}, 2-$, $4-$, and $6-\mathrm{H})$, and $6.45(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}, 1-\mathrm{H}), m / e 444\left(M^{+}\right)$
(Found: $\mathrm{C}, 67.8 ; \mathrm{H}, 7.2 ; \mathrm{S}, 7.1 . \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~S}$ requires C , 67.55 ; $\mathrm{H}, 7.25$; S, 7.2%).

3-(Diphenylmethylene)androsta-1,4-dien-17-one (3k).-3-Thioxoandrosta-1,4-dien-17-one (3 h) (70 mg) and diphenyldiazomethane (50 mg) in dichloromethane $(15 \mathrm{ml})$ were stirred at room temperature for 24 h under argon. Evaporation and p.l.c. gave the trienone (3 k) ($89 \mathrm{mg}, 88 \%$) as needles, m.p. $186-188^{\circ}$ (from ethanol), $\nu_{\max } 3000,1745$, and $1650 \mathrm{~cm}^{-1}, \lambda_{\text {max. }} 313(\varepsilon 23000)$ and $248 \mathrm{~nm}(10000)$, $\delta 0.87(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.19(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{Me}), 5.77(1 \mathrm{H}, \mathrm{d}$, $J 10 \mathrm{~Hz}, 1-\mathrm{H}), 6.1(1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, 4-\mathrm{H}), 6.31(1 \mathrm{H}, \mathrm{dd}, J$ 10 and $1.5 \mathrm{~Hz}, 2-\mathrm{H})$, and $7.19\left(10 \mathrm{H}, \mathrm{m}\right.$, aryl), $m / e 434\left(M^{+}\right)$ (Found: $\mathrm{C}, 88.4 ; \mathrm{H}, 8.2$. $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}$ requires $\mathrm{C}, 88.45 ; \mathrm{H}$, 7.9%).

3-(Diphenylmethylene)-11 β-hydroxy-17 2 ,21-[(1-methyl-ethylidene)dioxy]pregna-1,4-dien-20-one (3n).-The trienone (3 n) prepared from the thione (3 d) $(66 \mathrm{mg}$) and diphenyldiazomethane (40 mg) was obtained as needles ($73 \mathrm{mg}, 81 \%$), m.p. 187-188 (dec.) (from dichloromethane-hexane) $\nu_{\text {max. }} 3750,3000,1730$, and $1655 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }} 312(\varepsilon 24000)$ and $248 \mathrm{~nm}(11000), \delta 0.85(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.38(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CMe}_{2}\right), 1.4(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{Me}), 4.07(2 \mathrm{H}, \mathrm{ABq}, J 18 \mathrm{~Hz}, 21-\mathrm{H})$, 4.45br ($1 \mathrm{H}, \mathrm{s}, 11 \alpha-\mathrm{H}$) , $5.7-6.55(3 \mathrm{H}, \mathrm{m}, 1-, 2-$, and $4-\mathrm{H})$, and $7.22\left(10 \mathrm{H}, \mathrm{m}\right.$, aryl), $m / e 550\left(M^{+}\right)$(Found: C, 80.65; $\mathrm{H}, 7.5 . \quad \mathrm{C}_{37} \mathrm{H}_{42} \mathrm{O}_{4}$ requires $\mathrm{C}, 80.7$; $\mathrm{H}, 7.7 \%$).
$11 \beta, 17 \alpha$-Dihydroxy-3-(diphenylmethylene)-20-oxopregna-1,4-dien-21-yl Acetate (3o).-3-Thioxoprednisolone 21-acetate (3f) (50 mg) and diphenyldiazomethane (30 mg) gave on p.l.c. the triene (3o) as needles ($55 \mathrm{mg}, 84 \%$), m.p. $202-$ 204° (dec.) (from dichloromethane-hexane), $\nu_{\max } 3600$, $3000,1750,1730$, and $1650 \mathrm{~cm}^{-1}$, $\lambda_{\max } 312(\varepsilon 2500)$ and $247 \mathrm{~nm}(11500), \delta 0.9(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.38(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{Me})$, 2.11 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), 4.45br ($1 \mathrm{H}, \mathrm{s}, 11 \alpha-\mathrm{H}$), 4.9 ($2 \mathrm{H}, \mathrm{ABq}, J$ $18 \mathrm{~Hz}, 21-\mathrm{H}), 6.0-6.8(3 \mathrm{H}, \mathrm{m}, 1-, 2-$, and $4-\mathrm{H})$, and 7.2 $10 \mathrm{H}, \mathrm{m}$, aryl), m/e $552\left(M^{+}\right)$(Found: C, 77.95; H, 7.6. $\left(\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{5}\right.$ requires $\left.\mathrm{C}, 78.2 ; \mathrm{H}, 7.3 \%\right)$.

3-(Diphenylmethylene)cholesta-1,4,6-triene (3p).-The thione (3 j) (100 mg) and diphenyldiazomethane (55 mg) gave on p.l.c. the triene (3p) as needles ($101 \mathrm{mg}, 76 \%$), m.p. $141-142^{\circ}$ (from methanol), $\nu_{\max } 3000$ and $1640 \mathrm{~cm}^{-1}$, $\lambda_{\text {max }} 333(\varepsilon 22000), 250(7000)$, and $213 \mathrm{~nm}(20000), \delta 0.73$ $(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 0.8$ and $0.9\left(9 \mathrm{H}, 2 \mathrm{~d}, 20-\mathrm{and} 25-\mathrm{Me}_{2}\right), 1.09$ ($3 \mathrm{H}, \mathrm{s}, 10-\mathrm{Me}$), 5.57 ($1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}, 1-\mathrm{H}$), $5.86-6.16$ $(3 \mathrm{H}, \mathrm{m}, 4-, 6-$, and $7-\mathrm{H}), 6.38(1 \mathrm{H}, \mathrm{dd}, J 10$ and 1.5 Hz , $2-\mathrm{H})$, and $7.2\left(10 \mathrm{H}, \mathrm{m}\right.$, aryl), $m / e 530\left(M^{+}\right)$(Found: C, $90.35 ; \mathrm{H}, 9.35 . \quad \mathrm{C}_{40} \mathrm{H}_{50}$ requires $\mathrm{C}, 90.55 ; \mathrm{H}, 9.45 \%$).

17,20;20,21-Bismethylenedioxypregna-1,4-dien-11-one
(lg).-The hydridotetracarbonylferrate anion $[\mathrm{HFe}-$ $\left.\left(\mathrm{CO}_{4}\right)^{-}\right]$(4 equiv.) was generated in situ according to Alper's procedure. ${ }^{11}$ Dienethione (ld) ($500 \mathrm{mg}, 1$ equiv.) in $1,2-$ dimethoxyethane (25 ml) was added dropwise under argon and the mixture refluxed for 1 h . The mixture was cooled, filtered, and concentrated to give a brown residue which was extracted with benzene ($4 \times 30 \mathrm{ml}$) and ethyl acetate $(2 \times 20 \mathrm{ml})$. The combined extracts were washed with water, dried, concentrated, and chromatographed on Florisil (eluant dichloromethane) to give the diene (lg) (57 $\mathrm{mg}, 12 \%$), m.p. $146-148^{\circ}$ (dec.) (from methanol), $v_{\max }$ 3000 and $1715 \mathrm{~cm}^{-1}, \delta 0.8(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.33(3 \mathrm{H}, \mathrm{s}$, $10-\mathrm{Me}), 3.94(2 \mathrm{H}, \mathrm{s}, 21-\mathrm{H}), 4.98-5.17\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{O}\right)$, $5.23-5.85(2 \mathrm{H}, \mathrm{m}, 2-$ and $4-\mathrm{H})$, and $6.0-6.14(1 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}$), $m / e 386\left(M^{+}\right)$(Found: $\mathrm{C}, 71.2 ; \mathrm{H}, 7.8 . \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{5}$ requires $\mathrm{C}, 71.45 ; \mathrm{H}, 7.8 \%$). Similar reaction mixtures were obtained when the desulphurisation was repeated at room temperature and $0^{\circ} \mathrm{C}$.

9 α-Fluoro-11 β-hydroxy-20-oxo-17 α,21-dipropionyloxy-pregna-1,3,5-trien-3-yl 2-Nitrophenyl Disulphide (4a).-The dienethione (3 b) (400 mg) in dichloromethane (60 ml) was treated with 2-nitrobenzenesulphenyl chloride (154 mg) in small portions at $0{ }^{\circ} \mathrm{C}$ under argon. The yellow solution was evaporated and recrystallised under argon from dichloromethane-hexane to give the disulphide (4a) as yellow needles ($485 \mathrm{mg}, 90 \%$), m.p. $98-100^{\circ}$, $\nu_{\text {max. }} \mathbf{3 6 0 0}$, $3050,1740,1665,1340$, and $1300 \mathrm{~cm}^{-1}$, $\lambda_{\text {max }} 340(\varepsilon 10500)$, 329 (11000), and 270sh nm (10 200), $\delta 0.94(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me})$, $1.27(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{Me}), 4.5 \mathrm{br}(1 \mathrm{H}, \mathrm{s}, 11 \alpha-\mathrm{H}), 4.6(2 \mathrm{H}, \mathrm{ABq}$, $J 16 \mathrm{~Hz}, 21-\mathrm{H}), 5.66-6.25(4 \mathrm{H}, \mathrm{m}, 1-, 2-, 4-$, and $6-\mathrm{H})$, and $7.1-7.8$ and $8.0-8.3(4 \mathrm{H}, \mathrm{m}$, aryl-H) (Found: C, 60.75; $\mathrm{H}, 5.95 ; \mathrm{N}, 1.95 ; \mathrm{S}, 9.5 . \quad \mathrm{C}_{34} \mathrm{H}_{40} \mathrm{FNO}_{8} \mathrm{~S}_{2}$ requires $\mathrm{C}, 60.6$; $\mathrm{H}, 6.0 ; \mathrm{N}, 2.05 ; \mathrm{S}, 9.5 \%$).

21-Acetoxy-11 17α-dihydroxy-20-oxopregna-1,3,5-trien-3-yl 2-Nitrophenyl Disulphide (4b).-The disulphide (4b) ($57 \mathrm{mg}, 87 \%$), prepared from 3-thioxoprednisolone 21acetate (3 f) (50 mg) and 2-nitrobenzenesulphenyl chloride $(23 \mathrm{mg})$, was recrystallised under argon and in the cold from dichloromethane-hexane, m.p. $134-137^{\circ}$ (dec.), $\nu_{\max }$ $3700,3050,1735,1340$, and $1300 \mathrm{~cm}^{-1}, \lambda_{\text {max. }} 340(\varepsilon 10000)$ and $330 \mathrm{~nm}(10200), \delta 0.88(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.2(3 \mathrm{H}, \mathrm{s}$, $10-\mathrm{Me}), 2.1(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 4.43 \mathrm{br}(1 \mathrm{H}, \mathrm{s}, 11 \alpha-\mathrm{H}), 4.91(2 \mathrm{H}$, $\mathrm{ABq}, J 18 \mathrm{~Hz}, 21-\mathrm{H}), 5.41-6.3(4 \mathrm{H}, \mathrm{m}, 1-, 2-, 4-$, and $6-\mathrm{H})$, and $7.1-8.3(4 \mathrm{H}, \mathrm{m}$, aryl-H) (Found: C, 60.85; H, 5.75; $\mathrm{N}, 2.5 ; \mathrm{S}, 11.35 . \quad \mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{~S}_{2}$ requires $\mathrm{C}, 60.9 ; \mathrm{H}, 5.8$; N, 2.45 ; S, 11.2%).

17-Oxoandrosta-1,3,5-trien-3-yl 2-Nitrophenyl Disulphide (4c).-The disulphide (4c) ($284 \mathrm{mg}, 85 \%$), prepared from the dienethione $(3 \mathrm{~h})(305 \mathrm{mg})$ and 2 -nitrobenzenesulphenyl chloride (195 mg), was obtained as yellow needles, m.p. 136 139° (dec.) (from dichloromethane-hexane), $v_{\text {max. }} 3000$, $1745,1665,1340$, and $1300 \mathrm{~cm}^{-1}$, $\lambda_{\max } 339(\varepsilon 10000)$ and $328 \mathrm{~nm}(10500), \delta 0.88(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.02(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{Me})$, $5.5-6.17(4 \mathrm{H}, \mathrm{m}, 1-, 2-, 4-$, and $6-\mathrm{H})$, and $7.2-8.35(4 \mathrm{H}$, m , aryl), $m / e 453\left(M^{+}\right.$) (Found: C, 66.05; H, 5.85; N, 3.1; $\mathrm{S}, 14.25$. $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}_{2}$ requires $\mathrm{C}, 66.2 ; \mathrm{H}, 6.0 ; \mathrm{N}, 3.1$; S, 14.15%).

Reaction of Thione (3h) with 2-Nitrobenzenesulphenyl Chloride in the Presence of Phosphorus Pentasulphide.-Androsta-1,4-diene-3,17-dione (3g) (650 mg), phosphorus pentasulphide (800 mg), and benzene (60 ml) were stirred at $70^{\circ} \mathrm{C}$ for 6 h under argon. The mixture was cooled to room temperature, 2-nitrobenzenesulphenyl chloride (500 mg) was added, and stirring continued for another 16 h . The yellow mixture was filtered and the concentrated filtrate purified by p.l.c. The least polar fraction was recrystallised from methanol to give 4-methyl-17-oxoestra-1,3,5(10)-trien-1-yl 2-nitrophenyl disulphide (5) ($250 \mathrm{mg}, 24 \%$), m.p. $155-157^{\circ}$, $\nu_{\max } 3000,1750,1340$, and $1305 \mathrm{~cm}^{-1}$, $\lambda_{\max }$. $343 \mathrm{~nm}(\varepsilon 8000), \delta 0.95(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 2.12(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me})$, 6.8 and $7.18(2 \mathrm{H}, 2 \mathrm{~d}, J 8.8 \mathrm{~Hz}, 2$ - and $3-\mathrm{H})$, and $7.2-8.25$ ($4 \mathrm{H}, \mathrm{m}$, aryl), $m / e 453\left(M^{+}\right.$) (Found: C, 66.0; H, 5.9; N, $2.9 ; \mathrm{S}, 14.3 . \quad \mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}_{2}$ requires $\mathrm{C}, 66.2 ; \mathrm{H}, 6.0 ; \mathrm{N}$, $3.1 ; \mathrm{S}, 14.15 \%$). The more polar 1-chlovo-17-oxoandvosta-3,5-dien-3-yl 2-nitrophenyl disulphide (6) ($73 \mathrm{mg}, 7 \%$) was obtained as yellow prisms, m.p. 186-188 ${ }^{\circ}$ (dec.), $\nu_{\text {max. }}$ $3000,1745,1645,1340$, and $1300 \mathrm{~cm}^{-1}$, $\lambda_{\max } 247(\varepsilon$ $25000)$ and $350 \mathrm{~nm}(3600), \delta 0.88(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.0(3 \mathrm{H}$, $\mathrm{s}, 10-\mathrm{Me}), 2.83(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.22(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.7 \mathrm{br}$ $(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 6.4(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$, and $7.1-8.3(4 \mathrm{H}, \mathrm{m}$, aryl-H) (Found: C, 61,25; H, 5.75; N, 2.8; Cl, 6.95; S, 13.15. $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClNO}_{3} \mathrm{~S}_{2}$ requires $\mathrm{C}, 61.25 ; \mathrm{H}, 5.75 ; \mathrm{N}$, $2.85 ; \mathrm{Cl}, 7.25 ; \mathrm{S}, 13.1 \%$).

1-Chloro-17-oxoandrosta-3,5-dien-3-yl 2-Nitrophenyl Disulphide (6).-The disulphide (4 c) (100 mg) in benzene (30 ml) was treated with anhydrous hydrogen chloride at room temperature for 3 h . The solution was washed with aqueous sodium hydrogen carbonate, water, and dried. Evaporation and recrystallisation from methanol gave the disulphide (6) as yellow prisms ($84 \mathrm{mg}, 80 \%$), m.p. $185-187^{\circ}$, identical with the sample previously obtained (mixed m.p., i.r., u.v., and n.m.r.).

17ß-Acetoxyandrosta-3,5-dien-3-yl 2-Nitrophenyl Disulphide (8a).-Testosterone acetate (7b) (1 g), phosphorus pentasulphide (1 g), 2-nitrobenzenesulphenyl chloride (200 mg), and benzene (60 ml) were stirred at $75^{\circ} \mathrm{C}$ under argon. Additional portions of 2 -nitrobenzenesulphenyl chloride ($3 \times 130 \mathrm{mg}$) were added at 1.5 hourly intervals. The mixture was stirred for 1 h after the final addition and filtered. The concentrated filtrate was chromatographed on Florisil (eluant benzene) to give the yellow disulphide (8a) ($1.03 \mathrm{~g}, 70 \%$), m.p. $113-115^{\circ}$ (dec.) (from methanol) $\nu_{\text {max. }} 3000,1735,1360$, and $1300 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }} 243(\varepsilon 26000)$ and $350 \mathrm{~nm}(5500)$, $\delta 0.8(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 0.87(3 \mathrm{H}, \mathrm{s}, 10-$ $\mathrm{Me}), 2.0(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 4.58(1 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, 17 \alpha-\mathrm{H}), 5.43 \mathrm{br}$ $(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 6.27(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$, and $7.1-8.3(4 \mathrm{H}, \mathrm{m}$, aryl), $m / e 499\left(M^{+}\right)$(Found: C, 64.8; H, 6.6; N, 2.8; S, 12.9 . $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 64.9 ; \mathrm{H}, 6.65 ; \mathrm{N}, 2.8 ; \mathrm{S}$, 12.85%).

11,17-Dioxoandrosta-3,5-dien-3-yl 2-Nitrophenyl Disulphide (8b).—Androst-4-ene-3,11,17-trione (7d) (610 mg), phosphorus pentasulphide (600 mg), 2-nitrobenzenesulphenyl chloride (150 mg), and toluene (60 ml) were stirred at $80^{\circ} \mathrm{C}$ for 1.5 h under argon. Additional portions of 2 -nitrobenzenesulphenyl chloride ($4 \times 65 \mathrm{mg}$) were added at hourly intervals. After a further hour the mixture was filtered and the concentrated filtrate chromatographed on Florisil. Elution with dichloromethane gave the yellow disulphide (8 b) ($668 \mathrm{mg}, 73 \%$), m.p. $134-136^{\circ}$ (dec.) from methanol $\nu_{\text {max. }} 3000,1750,1720,1340$, and $1300 \mathrm{~cm}^{-1}, \lambda_{\text {max. }} 243(\varepsilon 24000)$ and $350 \mathrm{~nm}(6000), \delta 0.85$ ($3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$), 1.1 ($3 \mathrm{H}, \mathrm{s}, 10-\mathrm{Me}$), $5.4 \mathrm{br}(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 6.2$ ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$), and $7.2-8.3\left(4 \mathrm{H}, \mathrm{m}\right.$, aryl), $m / e 469\left(M^{+}\right)$ (Found: C, 63.65; H, 5.8; N, 2.9; S, 13.65. $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 63.95 ; \mathrm{H}, 5.8 ; \mathrm{N}, 3.0 ; \mathrm{S}, 13.65 \%$).

6-(2-Nitrophenylthio)-11,17-dioxoandrosta-3,5-dien-3-yl 2-Nitrophenyl Disulphide (8c).-The disulphide (8b) was generated as described above from the trione (7d) (610 mg); additional 2 -nitrobenzenesulphenyl chloride (400 mg) was added and stirring was continued for a further 6 h at $80^{\circ} \mathrm{C}$. The mixture was filtered, concentrated, chromatographed on Florisil (eluant ethyl acetate-dichloromethane $1: 99$), and separated by p.l.c. (dichloromethane) to give the less polar disulphide (8 b) ($365 \mathrm{mg}, 36 \%$) (i.r., n.m.r., u.v., and mixed m.p.) and the more polar disulphide (8 c), (246 mg , 18%), m.p. 202-204 (from dichloromethane-hexane), $\nu_{\max } 3000,1750,1720,1600,1340$, and $1300 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }} 242(\varepsilon 22000), 275 \mathrm{sh}(16000)$, and $355 \mathrm{~nm}(6000)$, $\delta 0.88(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.28(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{Me}), 6.93(1 \mathrm{H}, \mathrm{s}$, $4-\mathrm{H}$), and $7.0-8.28(8 \mathrm{H}, \mathrm{m}$, aryl) (Found: C, 59.7 ; H , $4.85 ; \mathrm{N}, 4.5 ; \mathrm{S}, 15.4 . \quad \mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{3}$ requires $\mathrm{C}, 59.8$; $\mathrm{H}, 4.85 ; \mathrm{N}, 4.5 ; \mathrm{S}, 15.45 \%$).

11,17-Dioxoandrosta-3,5-dien-3-yl Ethyl Disulphide (8b).Ethanethiol (90 mg) was added dropwise with stirring under argon to the disulphide (8 b) (470 mg) in dichloromethane $(20 \mathrm{ml})$ and triethylamine $(0.5 \mathrm{ml})$. After 2 h the solvent was evaporated off and the residue purified by p.l.c. (ben-zene-dichloromethane 2:3) to give the disulphide (8f) (238
$\mathrm{mg}, 64 \%$), m.p. $155-157^{\circ}$ (dec.) (from MeOH), $v_{\text {max }} 3000$, 1750 , and $1720 \mathrm{~cm}^{-1}, \lambda_{\text {max }} 248 \mathrm{~nm}(\varepsilon 18000), \delta 0.9(3 \mathrm{H}, \mathrm{s}$, $13-\mathrm{Me}), 1.17(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{Me}), 1.33\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3}-\right.$ $\mathrm{CH}_{2} \mathrm{~S}$), $2.77\left(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{MeCH}_{2} \mathrm{~S}\right), 5.54 \mathrm{br}(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$, and $6.4(1 \mathrm{l}, \mathrm{s}, 4-\mathrm{H}), m / e 376\left(M^{+}\right)$(Found: C, 66.85; H, 7.5; $\mathrm{S}, 16.9 . \quad \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 66.95 ; \mathrm{H}, 7.5$; 17.05%).

11,17-Dioxoandrosta-3,5-dien-3-yl Phenyl Disulphide $(8 \mathrm{~g})$. -Benzenethiol (130 mg) and the disulphide (8 b) (470 , $\mathrm{mg})$ gave the disulphide (8 g) ($310 \mathrm{mg}, 75 \%$), m.p. $130-132^{\circ}$ (dec.) (from MeOH), $v_{\text {max }} 3000,1750$, and $1720 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }} 246 \mathrm{~nm}(\varepsilon 22000), \delta 0.88(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.15(3 \mathrm{H}, \mathrm{s}$, $10-\mathrm{Me}), 5.5 \mathrm{br}(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 6.4(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$, and $7.3-7.7$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), m / e 424\left(M^{+}\right)$(Found: C, $70.95 ; \mathrm{H}, 6.7$; S, 15.15. $\quad \mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires, $\mathrm{C}, 70.7$; $\mathrm{H}, 6.65 ; \mathrm{S}, 15.1 \%$).

17ß-Acetoxyandrosta-3,5-dien-3-yl Ethyl Disulphide (8d).-The disulphide (8a) (400 mg) and ethanethiol (80 mg) gave the disulphide (8d) ($205 \mathrm{mg}, 63 \%$), m.p. $63.5-65^{\circ}$ (dec.) (from MeOH), $\nu_{\text {max. }} 3000 \mathrm{~s}$ and $1740 \mathrm{~s} \mathrm{~cm}^{-1}, \lambda_{\text {max. }}$ $248 \mathrm{~nm}(\varepsilon 16000)$, $\delta 0.84(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 0.93(3 \mathrm{H}, \mathrm{s}, 10-$ $\mathrm{Me}), 1.3\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}\right), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$ $2.7\left(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{MeCH}_{2} \mathrm{~S}\right), 4.63(1 \mathrm{H}, \mathrm{m}, 17 \alpha-\mathrm{H}), 5.4 \mathrm{br}$ $(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$, and $6.3(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), m / e 406\left(M^{+}\right)$(Found: $\mathrm{C}, 68.05 ; \mathrm{H}, 8.15 ; \mathrm{S}, 15.5 . \quad \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 67.95$; H, 8.4; S, 15.75%).

17ß-Acetoxyandrosta-3,5-dien-3-yl Phenvl Disulphide (8e).—The disulphide (8a) (400 mg) and benzenethiol (110 mg) gave the disulphide (8 e) ($263 \mathrm{mg}, 72 \%$) (dec.) (from MeOH), $\nu_{\text {max. }} 3000$ and $1740 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }} 247 \mathrm{~nm}(\varepsilon 20500)$ $\delta 0.83(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 0.91(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{Me}), 2.01(3 \mathrm{H}, \mathrm{s}$, OAc), $4.6(1 \mathrm{H}, \mathrm{m}, 17 \alpha-\mathrm{H}), 5.4 \mathrm{br}(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 6.26(1 \mathrm{H}, \mathrm{s}$, $4-\mathrm{H})$, and $7.1-7.6(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), m / e 454\left(M^{+}\right)$(Found: C, $71.3 ; \mathrm{H}, 7.35 ; \mathrm{S}, 14.1 . \quad \mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 71.3 ; \mathrm{H}$, 7.55 ; S, 14.1\%).

Attempted Preparation of Bis-11,17-dioxoandrosta-3,5-dien-3-yl Disulphide (9a).-To 11,17-dioxoandrost-4-ene-3thione (7e) [from androst-4-ene-3,11,17-trione (7d) (910 mg) and phosphorus pentasulphide (800 mg) in toluene (60 ml) at $80{ }^{\circ} \mathrm{C}$ under argon] 11,17-dioxoandrosta-3,5-dien-3-yl 2-nitrophenyl disulphide (8 b) (500 mg) and triethylamine (2 ml) were added. After stirring for 6 h the mixture was filtered, concentrated, and chromatographed on Florisil to give (eluant dichloromethane) unchanged disulphide (8b) $(430 \mathrm{mg})$ and (eluant ethyl acetate-dichloromethane $3: 97$) a fraction which was purified by p.l.c. to give bis-11,17-dioxoandrosta-3,5-dien-3-yl sulphide (9b) (402 mg), m.p. $196-198^{\circ}$ (dec.) (from MeOH), $\nu_{\text {max }} 3000,1750,1720$, and $1605 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }} 297 \mathrm{sh}(\varepsilon 8500), 270(13100), 248$ (17000), and $239 \mathrm{~nm}(18000), \delta 0.9\left(6 \mathrm{H}, \mathrm{s}, 13\right.$ - and $\left.13^{\prime}-\mathrm{Me}\right)$, $1.18\left(6 \mathrm{H}, \mathrm{s}, 10-\mathrm{and} 10^{\prime}-\mathrm{Me}\right), 5.5 \mathrm{br}\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{and} 6^{\prime}-\mathrm{H}\right)$, and $6.2\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{and} 4^{\prime}-\mathrm{H}\right), m / e 598\left(M^{+}\right)$(Found: C, $76.35 ; \mathrm{H}, 7.7 ; \mathrm{S}, 5.1 . \quad \mathrm{C}_{38} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 76.2 ; \mathrm{H}$, 7.75 ; S, 5.35\%).

Bis-11,17-dioxoandrosta-3,5-dien-3-yl Sulphide (9b).— Androst-4-ene-3,11,17-trione (7d) (750 mg), phosphorus pentasulphide (600 mg), triethylamine (2 ml), and toluene (50 ml) were stirred at $75{ }^{\circ} \mathrm{C}$ for 6.5 h under argon. The mixture was cooled and 2 -nitrobenzenesulphenyl chloride $(100 \mathrm{mg})$ and triethylamine $(0.5 \mathrm{ml})$ were added. After 20 \min the mixture was filtered, concentrated, and chromatographed on Florisil to give (eluant dichloromethane) 11,17-dioxoandrosta-3,5-dien-3-yl 2-nitrophenyl disulphide (8b) (112 mg) and (eluant ethyl acetate-dichloromethane $3: 97$) a more polar fraction. P.l.c. (ethyl acetate-dichloromethane $1: 99$) gave the title sulphide (9 b) ($394 \mathrm{mg}, 54 \%$), m.p. 196 -
198° (dec.) (from MeOH) (identical with the sample previously obtained).

4-Methoxy-3-methyl-2H-1-benzopyran-2-thione (10c).-4-Methoxy-3-methyl-2H-1-benzopyran-2-one (10b) ${ }^{19}$ (570 $\mathrm{mg})$, phosphorus pentasulphide (1 g), and toluene (30 ml) were stirred at $70{ }^{\circ} \mathrm{C}$ for 20 h under argon. The mixture was filtered and the residue washed with dichloromethane $(2 \times 15 \mathrm{ml})$. The combined filtrates were concentrated and chromatographed on Florisil (eluant benzene), to give the thione (10 c) ($452 \mathrm{mg}, 72 \%$) as yellow needles, m.p. $115-116^{\circ}$ (from benzene-hexane), $\nu_{\text {max. }}(\mathrm{KBr}) 1605$, 1560 , and $1130 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }}$ (hexane) 384sh ($\varepsilon 9100$), 370 (11800), 360sh (10700), 305 (1800), 276 (8300), and 244 nm (5000), $\delta 2.38(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 4.0(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe})$, and $7.14-$ $7.83\left(4 \mathrm{H}, \mathrm{m}\right.$, aryl), $m / e 206\left(M^{+}\right)$(Found: C, 63.9; H, $5.05 ; \mathrm{S}, 15.4 . \quad \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 64.05 ; \mathrm{H}, 4.9$; S , 15.55%).

Hydrolysis of the Thione (10c).-The thione (10c) (155 mg), mercuric acetate (600 mg), acetone (25 ml), and acetic acid $(0.5 \mathrm{ml})$ were stirred at room temperature until the mixture became colourless. The mixture was filtered, concentrated, and diluted with water. The resultant precipitate was washed thoroughly with water. Chromatography on silica gel (eluant diethyl ether) gave 4-methoxy-3-methyl$2 H$-l-benzopyran-2-one (10 b) (126 mg) as needles, m.p. 42°, (identical with authentic material).

Reaction of Cyclocumarol (12a) with Phosphorus Penta-sulphide.-Cyclocumarol (12a) (1.5 g), phosphorus pentasulphide (1.0 g), and benzene (40 ml) were stirred at $80^{\circ} \mathrm{C}$ for 30 h under argon. Additional phosphorus pentasulphide (0.5 g) was added and reaction continued for another 28 h . The mixture was filtered and the residue washed with dichloromethane ($2 \times 15 \mathrm{ml}$). The combined concentrated filtrates were chromatographed on Florisil (eluant benzene) to give (in order of increasing polarity) 2-methyl-4-phenyl$4 \mathrm{H}, 5 \mathrm{H}$-thiopyrano[2,3-b][1]benzopyran-5-thione (13a) (428 $\mathrm{mg}, \mathbf{2 9} \%$), as dark red crystals, m.p. $178-179.5^{\circ}$ (from benzene-hexane), $v_{\text {max. }}(\mathrm{KBr}) 1660,1605,1590,1240$, 1170 , and $1100 \mathrm{~cm}^{-1}$, $\lambda_{\max } 389$ ($\varepsilon 16000$), 353 (13900), 305sh (4000), 228sh (22 300), and $210 \mathrm{~nm}(37100)$, $\delta 2.04$ $(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 5.88(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $4-\mathrm{H}), 7.1-7.6(8 \mathrm{H}$, m , aryl), and $8.37-8.57$ ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$) (Found: C, 70.95 ; $\mathrm{H}, 4.45 ; \mathrm{S}, 19.85 ; M^{+}, 322.0484 . \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{OS}_{2}$ requires C , $70.75 ; \mathrm{H}, 4.4 ; \mathrm{S}, 19.9 \% ; \quad M, 322.0485$); 2-methyl-4-phenyl-4H,5H-thiopyrano[3,2-c][1]benzopyran-5-thione (14a) ($248 \mathrm{mg}, 17 \%$) as orange needles, m.p. $166-167^{\circ}$ (from hexane), $\nu_{\max }(\mathrm{KBr}) 1610,1590,1260$, and $1170 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }} 410(\varepsilon 12000), 390(13000), 368(11000), 355 \mathrm{sh}(9100)$, 310 (5 100), 281 (9500), 270sh (9000), 246 (16800), and 215 (16500), $\delta 2.1(3 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz}, 2-\mathrm{Me}), 5.65(1 \mathrm{H}, d, J 7 \mathrm{~Hz}$, $4-\mathrm{H}), 5.98(1 \mathrm{H}, \mathrm{dq}, J 1$ and $7 \mathrm{~Hz}, 3-\mathrm{H}), 7.1-7.53(8 \mathrm{H}, \mathrm{m}$, aryl), and $7.58-7.82$ ($1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$), (Found: C, 70.75 ; $\mathrm{H}, 4.5 ; \mathrm{S}, 19.85 \% ; M^{+}, 322.0484 . \quad \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{OS}_{2}$ requires C , $70.75 ; \mathrm{H}, 4.4 ; \mathrm{S}, 19.9 \% ; M$; 322.0485); and 2 -methyl-4-phenyl-4H,5H-pyrano[3,2-c][1]benzopyran-5-thione (14c) ($239 \mathrm{mg}, 17 \%$), m.p. $184-186^{\circ}$ (from benzene-hexane), $\nu_{\text {max. }}(\mathrm{KBr}) 1605,1560,1205,1158$, and $1125 \mathrm{~cm}^{-1}$, $\lambda_{\text {max. }}$ (hexane) 387 ($\varepsilon 11500$), 371 (13000), 310sh (4600), and $278 \mathrm{~nm}(14000), \delta 2.03(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 4.77(1 \mathrm{H}, \mathrm{d}$, $J 6 \mathrm{~Hz}, 4-\mathrm{H}), 5.13(1 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 3-\mathrm{H}), 7.01-7.5(8 \mathrm{H}, \mathrm{m}$, aryl), and $7.8-8.0(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), m / e 306\left(M^{+}\right)$(Found: C, $74.55 ; \mathrm{H}, 4.8 ; \mathrm{S}, 10.2 . \quad \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}$, 4.6; S, 10.45%).

2-Methyl-4-phenyl-4H,5H-thiopyrano[2,3-b][1]benzo-
pyran-5-one (13b).-2-Methyl-4-phenyl-4H,5H-thiopyran-
[2,3-b][1]benzopyran-5-thione (13a) (97 mg), mercuric acetate (500 mg), and acetone (60 ml) were stirred at room temperature for 18 h . The mixture was filtered and the filtrate concentrated. Chromatography on Florisil (eluant benzene) gave the pyranone (13 b) ($81 \mathrm{mg}, 88 \%$) as needles, m.p. $117-118^{\circ}$ (from benzene-hexane), $\nu_{\text {max. }}$ (KBr) 1665 , $1640,1615,1565,1465$, and $1370 \mathrm{~cm}^{-1}$, $\lambda_{\max } 314 \mathrm{sh}$ ($\varepsilon 6900$), $302(9100), 294(7200)$, and $217 \mathrm{~nm}(23500)$, $\delta 2.06(3 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz}, 2-\mathrm{Me}), 5.15(1 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 4-\mathrm{H})$, $5.83(1 \mathrm{H}, \mathrm{dd}, J 1$ and $6 \mathrm{~Hz}, 3-\mathrm{H}), 7.07-7.6(8 \mathrm{H}, \mathrm{m}$, aryl), and $7.96-8.17(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$ (Found: C, 74.6; H, 4.8; $\mathrm{S}, 10.6 \%$; $M^{+}, 306.0718 . \quad \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}$, $4.6 ; \mathrm{S}, 10.45 \%$; $\left.M^{+}, 306.0714\right)$.
2-Methyl-4-phenyl-4H,5H-thiopyran [3,2-c][1]benzopyran-5-one (14b).-The benzopyranone (14b) ($80 \mathrm{mg}, 87 \%$) was prepared from 2 -methyl-4-phenyl- $4 H, 5 H$-thiopyrano[3,2-c]-[1]benzopyran-5-thione (14a) (97 mg) and mercuric acetate (500 mg), m.p. $210-212^{\circ}$ (from benzene-hexane), $\nu_{\text {max. }}(\mathrm{KBr})$ $1710,1600,1455$, and $1270 \mathrm{~cm}^{-1}, \lambda_{\max } 320 \mathrm{sh}(\varepsilon 9400$), 310 (9900), 286 (11300), 248 (14500), 240 (15000), and $213 \mathrm{~nm}(33000)$, $\delta 2.1$ ($3 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, 2-\mathrm{Me}$), 4.97 ($1 \mathrm{H}, \mathrm{d}$, $J 6 \mathrm{~Hz}, 4-\mathrm{H}), 5.87(1 \mathrm{H}, \mathrm{dq}, J 1.5$ and $6 \mathrm{~Hz}, 3-\mathrm{H}), 7.05-7.5$ $(8 \mathrm{H}, \mathrm{m}$, aryl), and $7.5-7.7(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H})$, (Found: C, $74.7 ; \mathrm{H}, 4.95 ; \mathrm{S}, 10.6 \%$; $M^{+}, 306.0714 . \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}, 4.6 ; \mathrm{S}, 10.45 \%$; $M^{+}, 306.0714$).

Hydrolysis of the Thione (14c).-The thione (14c) (93 mg) was treated with mercuric acetate (500 mg) to give 2-methyl-4-phenyl-4H,5H-pyrano[3,2-c][1]benzopyran-5-one (14d) ($73 \mathrm{mg}, \mathbf{8 5} \%$), m.p. $145-146^{\circ}$ (from methanol), identical with an authentic sample (see below).

Isolation of the Intermediate Pyranone (14d) in the Reaction of Cyclocumarol (12a) with $\mathrm{P}_{4} \mathrm{~S}_{10}$.-Cyclocumarol (12a) (10 g), phosphorus pentasulphide (0.8 g), and benzene (35 ml) were stirred at $80{ }^{\circ} \mathrm{C}$ for 1.5 h under argon. The mixture was filtered, concentrated, and chromatographed on Florisil (eluant diethyl ether) to yield 2-methyl-4-phenyl$4 H, 5 H$-pyrano[3,2-c][1]benzopyran-5-one (14d) (756 mg , 86%), m.p. 146- 147° (from methanol) (lit., ${ }^{21}$ m.p. 145$146^{\circ}$), $v_{\text {max. }}(\mathrm{KBr}) 1720,1630$, and $1610 \mathrm{~cm}^{-1}, \lambda_{\text {max. }}$. 328 sh ($\varepsilon 4800$), 312 (8000), 302sh (7900), 273 (10500), 267 (10800), and $260 \mathrm{~nm}(11600), \delta 2.0(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 4.42$ $(1 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 4-\mathrm{H}), 4.97(1 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 3-\mathrm{H}), 7.0-7.45$ $(8 \mathrm{H}, \mathrm{m}$, aryl), and $7.67-7.87(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), m / e 290$ $\left(M^{+}\right)$(Found: C, 78.6; H, 5.0. Calc. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3}: \mathrm{C}$, 78.6; H, 4.9\%).

Reaction of Pyranone (14d) with Phosphorus Penta-sulphide.- 2-Methyl-4-phenyl-4H,5H-pyrano[3,2-c][1]ben-zopyran-5-one (14 d) (650 mg), phosphorus pentasulphide $(900 \mathrm{mg})$, and benzene (35 ml) were stirred at $80^{\circ} \mathrm{C}$ for 25 h under argon. Additional phosphorus pentasulphide (400 mg) was added and stirring continued for another 30 h . The mixture was filtered, concentrated, and chromatographed on Florisil (eluant benzene) to give 2 -methyl-4-phenyl-4H,5H-thiopyrano[2,3-b][1]benzopyran-5-thione
(13a) ($120 \mathrm{mg}, \quad 18 \%$) and 2 -methyl-4-phenyl-4H,5Hpyrano $[3,2-c][1]$ benzopyran-5-thione (14 c) ($391 \mathrm{mg}, 59 \%$) (identical with authentic samples).

Reaction of Thione (14c) with Phosphorus Pentasulphide.The thione (14c) (465 mg), phosphorus pentasulphide (650 mg), and benzene (20 ml) were stirred at $80{ }^{\circ} \mathrm{C}$ for 48 h under argon. The mixture was filtered, concentrated, and chromatographed on Florisil (eluant benzene) to give (in order of increasing polarity) the benzopyranthione (13a) ($204 \mathrm{mg}, 42 \%$), the dithio-compound (14 a) ($93 \mathrm{mg}, 19 \%$), and unchanged monothione (14 c) ($78 \mathrm{mg}, 17 \%$).

Reaction of Warfarin (10a) with Phosphorus Pentasul-phide.-Warfarin (10a) (1 g), phosphorus pentasulphide $(1.2 \mathrm{~g})$, and benzene (60 ml) were stirred at $85^{\circ} \mathrm{C}$ for 36 h under argon. Additional phosphorus pentasulphide (0.5 g) was added and the reaction continued for another 24 h . The mixture was filtered and the residue washed with dichloromethane ($2 \times 15 \mathrm{ml}$). The combined filtrates were concentrated and chromatographed on Florisil (eluant benzene) to give the benzopyranthiones (13 a) (376 mg), (14 a) (97 mg), and (14 c) (159 mg). A similar reaction mixture was obtained with the 4 -methoxy derivative ($10 f$) of Warfarin (10a).

Isolation of Intermediates in the Reaction of Warfarin (10a) with Phosphorus Pentasulphide.-Warfarin (10a) (1.2 g), phosphorus pentasulphide (1.2 g), and benzene (80 ml) were stirred at $85{ }^{\circ} \mathrm{C}$ for 2 h (argon). The mixture was filtered, concentrated, and chromatographed on Florisil (eluant diethyl ether) to give a mixture of two products. Recrystallisation from methanol gave 2 -methyl-4-phenyl$4 H, 5 H$-pyrano[3,2-c][1]benzopyran-5-one (14d) (620 mg , $55 \%)$, m.p. 146-147 ${ }^{\circ}$. The mother liquor was separated by p.l.c. (diethyl ether) to give additional pyranone (14d) ($96 \mathrm{mg}, 18 \%$) and a second product, 3,4-dihydro-2-mercapto-2-methyl-4-phenyl-2H,5H-pyrano[3,2-c][1]benzopyran-5-one (12 b) ($51 \mathrm{mg}, 4 \%$), m.p. $109-114^{\circ}$ (dec.) (from benzenehexane), $v_{\text {max. }}(\mathrm{KBr}) 2950,2560,1720$, and $1625 \mathrm{~cm}^{-1}$, $\delta 1.95(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.87-2.75(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.77(1 \mathrm{H}, \mathrm{s}$, exch. $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{SH}\right), 3.95-4.25(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 7.1-7.57(8 \mathrm{H}$, m , aryl), and $7.7-7.92(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H})$, (Found: M^{+}, $324.0815 . \quad \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~S}$ requires $M 324.0820$).

2-Methyl-4-phenyl-4H,5H-pyrano[3,2-c][1]benzopyran-5one (14d).-Warfarin (10a) (3.5 g), phosphorus pentaoxide $(4 \mathrm{~g})$, and benzene (180 ml) were refluxed for 1 h . The mixture was filtered, concentrated, and chromatographed on Florisil (eluant diethyl ether) to yield the title compound (14 d) $(2.96 \mathrm{~g}, 86 \%)$, m.p. $146-147^{\circ}$ (from methanol).

Reaction of 4-Hydroxy-2H-1-benzopyran-2-one (10e) with Phosphorus Pentasulphide.-4-Hydroxy-2H-1-benzopyran-2-one (10 e) (1.62 g), phosphorus pentasulphide (1.8 g), and acetonitrile (100 ml) were refluxed with stirring for 24 h under argon. The mixture was filtered and the residue washed with dichloromethane ($3 \times 20 \mathrm{ml}$). The concentrated filtrates were chromatographed on Florisil (eluant benzene) to give bis(2-thioxo-2H-1-benzopyran-4-yl) sulphide (18 a) ($1.01 \mathrm{~g}, 57 \%$) as orange needles, m.p. 206-209 ${ }^{\circ}$ (dec.) (from benzene-hexane), $\vee_{\text {max. }}(\mathrm{KBr}) 1605,1580$, $1530,1350,1215,1155,1135$, and $1105 \mathrm{~cm}^{-1}$, $\lambda_{\max }$ $\left(\mathrm{CH}_{3} \mathrm{CN}\right) 400$ sh ($\varepsilon 10000$), 385 (12000), 316 (7000), and $273 \mathrm{~nm}(12250)$, $\delta 7.07\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}, 3^{\prime}-\mathrm{H}\right)$, and $7.2-7.8$ $(8 \mathrm{H}, \mathrm{m}$, aryl), (Found: C, 61.2; H, 3.0; S, 27.05\%; $M^{+} 354.9831 . \mathrm{C}_{18} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}_{3}$ requires $\mathrm{C}, 61.0 ; \mathrm{H}, 2.85 ; \mathrm{S}$, 27.15%; $M, 354.9843$.

Bis(2-oxo-2-H-1-benzopyran-4-yl) Sulphide (18b).—(A) The dithione (18a) (100 mg) in dichloromethane (20 ml) was treated with $85 \% 3$-chloroperoxybenzoic acid (120 mg , 2 equiv.) under argon. The solution was washed with aqueous sodium hydrogen carbonate and water, dried, and irradiated by a 1.5 kW photoflood lamp for 1 h . Evaporation and purification by p.l.c. (dichloromethane) gave the sulphide (18 b) ($70 \mathrm{mg}, 77 \%$), m.p. $258-260^{\circ}$ (dec.) (from methanol), $\nu_{\max } 1755 \mathrm{sh}, 1725,1600,1555$, and 1345 $\mathrm{cm}^{-1}, \lambda_{\max } 315(\varepsilon 12000)$ and $275 \mathrm{~nm}(18000), \delta 6.38(2 \mathrm{H}$, $\left.\mathrm{s}, 3-\mathrm{H}, 3^{\prime}-\mathrm{H}\right)$ and $7.2-7.8\left(8 \mathrm{H}, \mathrm{m}\right.$, aryl), $m / e 322\left(M^{+}\right)$ (Found: C, 67.0; H, 3.2; S, 10.15. $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}$ requires C , $67.05 ; \mathrm{H}, 3.15 ; \mathrm{S}, 9.95 \%$). (B) Hydrolysis of the dithione
(18a) (100 mg) with mercuric acetate (800 mg) gave the sulphide (18 b) ($75 \mathrm{mg}, 82 \%$), m.p. $258-260^{\circ}$ (from methanol).
(2S-trans)-7-Chloro- $\mathbf{2}^{\prime}, 4,6$-trimethoxy- $\mathbf{6}^{\prime}$-methyl-4'-thioxospiro $[$ benzofuran-2(3H), 1'-cyclohex-2-en]-3-one (19b).Griseofulvin (19a) (1.5 g), phosphorus pentasulphide (1.8 g), and benzene (180 ml) were stirred at reflux temperature for 19 h under argon. The mixture was filtered and the residue washed with benzene ($2 \times 30 \mathrm{ml}$). The combined filtrates were evaporated and chromatographed on Florisil (argon) (eluant dichloromethane) to give the purple griseofulvin-4'thione (19b) ($790 \mathrm{mg}, 51 \%$), m.p. $156-157^{\circ}$ from diethyl ether-hexane under argon, $\nu_{\text {max. }} 3000,1715,1615,1580$, and $1260 \mathrm{~cm}^{-1}, \lambda_{\max } 376$ ($\varepsilon 19600$), $323(6000)$, and 295 $\mathrm{nm}(20000), \delta 0.97\left(3 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 6^{\prime}-\mathrm{Me}\right), 2.3-3.43(3 \mathrm{H}$, $\mathrm{m}, 5^{\prime}$ and $\left.6^{\prime}-\mathrm{H}\right), 3.7\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{OMe}\right), 4.0$ and $4.07(6 \mathrm{H}, 2 \mathrm{~s}$, $4-$ and $6-\mathrm{OMe}), 6.22(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$, and $6.52\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right)$ (Found: C, $55.55 ; \mathrm{H}, 4.75 ; \mathrm{Cl}, 9.5 ; \mathrm{S}, 8.75 \% ; M^{+}$, 368.047 4. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{5} \mathrm{~S}$ requires $\mathrm{C}, 55.35 ; \mathrm{H}, 4.65 ; \mathrm{Cl}$, $9.6 ; \mathrm{S}, 8.7 \% M, 368.0485)$.

Reaction of Griseofulvin-4'-thione (19b) with Diphenyldiazo-methane.-Griseofulvin-4'-thione (19b) (220 mg) and diphenyldiazomethane (120 mg) in dichloromethane (15 ml) were stirred at room temperature under argon for 24 h . The two major components were separated by p.l.c. (ben-zene-dichloromethane $1: 19$) to give the more polar thiivan (19c) as needles ($210 \mathrm{mg}, \mathbf{6 6 \%}$), m.p. $177-178^{\circ}$ (dec.) (from methanol), $v_{\text {max. }}(\mathrm{KBr}) 3000,1710,1640,1610$, and 1580 $\mathrm{cm}^{-1}, \lambda_{\text {max. }} 325(\varepsilon 4900), 290(21000), 237 \mathrm{sh}(29500)$, and $214 \mathrm{~nm}(36300), \delta 0.77\left(3 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 6^{\prime}-\mathrm{Me}\right)$, $1.51(1 \mathrm{H}$, $\left.\mathrm{m}, 6^{\prime}-\mathrm{H}\right), 2.83-2.88\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.2\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{OMe}\right)$, $3.92-3.97(6 \mathrm{H}, 2 \mathrm{~s}, 4-\mathrm{and} 6-\mathrm{OMe}), 4.55\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right), 6.1$ ($1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}$), and $7.1-7.7$ ($10 \mathrm{H}, \mathrm{m}$, aryl) (Found: C, $67.05 ; \mathrm{H}, 5.05 ; \mathrm{Cl}, 6.65 ; \mathrm{S}, 6.0 \%$; $M^{+}, 534.1246 . \mathrm{C}_{30}{ }^{-}$ $\mathrm{H}_{27} \mathrm{ClO}_{5} \mathrm{~S}$ requires $\mathrm{C}, 67.35 ; \mathrm{H}, 5.1 ; \mathrm{Cl}, 6.65 ; \mathrm{S}, 6.0 \%$; $M, 534.1268$) and an inseparable mixture (104 mg), $\nu_{\text {max. }}$ $(\mathrm{KBr}) 3000,1710,1610$, and $1580 \mathrm{~cm}^{-1}, \delta 0.77$ and 0.84 $\left(3 \mathrm{H}, 2 \mathrm{~d}, J 6\right.$ and $\left.6 \mathrm{~Hz}, 6^{\prime}-\mathrm{Me}\right), 1.7-3.15\left(3 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 3.2$ and $3.36\left(3 \mathrm{H}, 2 \mathrm{~s}, 2^{\prime}-\mathrm{OMe}\right), 3.96$ and $3.99(6 \mathrm{H}$, $2 \mathrm{~s}, 4-\mathrm{and} 6-\mathrm{OMe}), 4.63$ and $5.8\left(1 \mathrm{H}, 2 \mathrm{~s}, 3^{\prime}-\mathrm{H}\right), 6.08$ and $6.11(1 \mathrm{H}, 2 \mathrm{~s}, 5-\mathrm{H})$, and $7.2-7.7(10 \mathrm{H}, \mathrm{m}$, aryl), $m / e 534$, 502. This mixture (95 mg) was treated with triphenylphosphine (35 mg) in benzene (10 ml) in the dark for 3 days. Purification by p.l.c. (dichloromethane) gave (2S-trans)-7-chloro-4'-(diphenylmethylene)-2',4,6-trimethoxy-6'-methyl-spiro[benzofuran-2(3H), 1'-cyclohex-2-en]-3-one (19d) as needles (85 mg), m.p. 233- 235° (from ethanol), $v_{\text {max. }}(\mathrm{KBr})$ $3000,1710,1610$, and $1580 \mathrm{~cm}^{-1}, \lambda_{\text {max }} 295(\varepsilon 22300)$ and 234sh nm (11 700), $\delta 0.84\left(3 \mathrm{H}, \mathrm{d}, J{ }_{6} \mathrm{~m}_{\mathrm{Hz}}, 6^{\prime}-\mathrm{Me}\right), 2.2-3.1$ $\left(3 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 3.36\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{OMe}\right), 3.97$ and $3.99(6 \mathrm{H}, 2 \mathrm{~s}, 4$ - and $6-\mathrm{OMe}), 5.8\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right), 6.08(1 \mathrm{H}, \mathrm{s}$, $5-\mathrm{H})$, and 7.25 ($10 \mathrm{H}, \mathrm{m}$, aryl) (Found: C, 71.85 ; H, $5.45 ; \mathrm{Cl}, 7.25 \%$; $M^{+}, 502.1543$. $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{ClO}_{5}$ requires C , $71.65 ; \mathrm{H}, 5.4 ; \mathrm{Cl}, 7.05 \%$; $M, 502.1547$).

Desulphurisation of the Thiiran (19c).-(A) The thiiran (19c) (54 mg), triphenylphosphine (27 mg), and benzene $(10 \mathrm{ml})$ were stirred in the dark for 3 days. The resulting mixture was separated by p.l.c. (dichloromethane) to give triphenylphosphine sulphide (28 mg), m.p. $160-161^{\circ}$ (from EtOH) and the diene (19 d) ($46 \mathrm{mg}, 90 \%$), m.p. $232-235^{\circ}$ (from EtOH). (B) The thiiran (19c) (54 mg) was heated to $190^{\circ} \mathrm{C}$ for 5 min under argon. The residue was dissolved in dichloromethane and the product (19 d) ($41 \mathrm{mg}, 80 \%$) was separated from elemental sulphur by p.l.c. (dichloromethane).

We thank Dr. A. G. M. Barrett for his help in preparing this manuscript.
[8/892 Received, 15th May, 1978]

REFERENCES

${ }^{1}$ E. Campaigne, ' The Chemistry of the Carbonyl Group,' ed. S. Patai, Interscience, New York, 1966, p. 917
${ }_{2}$ R. Mayer, G. Hiller, M. Nitzschke, and J. Jentzch, Angew. Chem. Internat. Edn., 1963, 2, 370.
${ }^{3}$ L. Legrand, Bull. Soc. Chim. France, 1959, 1599.
${ }^{4}$ F. M. Dean, J. Goodchild, and A. W. Hill, J. Chem. Soc. (C), 1969, 2192; J.C.S. Perkin I, 1973, 1022; F. M. Dean, J. Goodchild, A. W. Hill, S. Murray, and A. Zahmann, ibid., 1975, 1335.
${ }^{5} \mathrm{H}$. Staudinger and H. Freudenberger, Org. Synth., 1943, Col. Vol. II, 573
${ }^{6}$ M. Weissenfels and M. Pulst, J. prakt. Chem., 1973, 315, 873; Tetrahedron, 1972, 28, 5197.
${ }^{7}$ D. S. Tarbell and V. P. Wystrock, J. Amer. Chem. Soc., 1946, 68, 2116; M. M. Campbell and D. M. Evgenios, J.C.S. Perkin I, 1973, 2862.
${ }^{8}$ L. Brandsma, Rec. Trav. chim., 1970, 89, 593; L. Brandsma, P. J. W. Schuijl, D. Schuijl-Laros, J. Meijer, and H. E. Wijers, Internat. J. Sulfur Chem. (B), 1971, 6, 85.
${ }^{\text {e }}$ D. H. R. Barton, L. S. L. Choi, R. H. Hesse, M. M. Pechet and C. Wilshire, J.C.S. Chem. Comm., 1975, 557.
${ }^{10}$ D. H. R. Barton, F. S. Guziec, and I. Shahak, J.C.S. Perkin I, 1974, 1794.
${ }^{11}$ H. Alper, J. Org. Chem., 1975, 40, 2694.
${ }^{12}$ D. H. R. Barton, R. V. Stick, and R. Subramanian, J.C.S. Perkin I, 1976, 2112.
${ }^{13}$ P. Metzner and J. Vialle, Bull. Soc. chim. France, 1970, 3739; 1972, 3138.
${ }^{14}$ R. Bourdon, Bull. Soc. chim. France, 1958, 722.
${ }^{15}$ A. J. Parker and N. Kharasch, Chem. Rev., 1959, 59, 583
J. P. Danehy, 'The Chemistry of Organic Sulphur Compounds,'
ed. N. Kharasch and C. Y. Meyers, Pergamon, Oxford, 1966, vol. 2, p. 337.
${ }^{16}$ P. V. Demarco, D. Doddrell, and E. Wenkert, Chem. Comm., 1969, 1418.
${ }^{17}$ M. Tanabe and B. Bigley, J. Amer. Chem. Soc., 1961, 83, 756.
${ }^{18}$ A. B. Turner, J. Chem. Soc. (C), 1968, 2568.
19 D. W. Hutchinson and J. A. Tomlinson, Tetrahe dron, 1969, 25, 2531.
${ }_{20}$ M. Ikawa, M. A. Stahmann, and K. P. Link, J. Amer. Chem. Soc., 1944, 46, 902.
${ }^{21}$ D. Paquer and J. Vialle, Bull. Soc. chim. France, 1969, 3327.

[^0]: a; $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CH}(\mathrm{Ph}) \mathrm{CH}_{2} \mathrm{COMe}, \mathrm{X}=\mathrm{O}$
 b; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{X}=\mathrm{O}$
 c; $R^{1}=R^{2}=M e, X=S$
 d; $R^{1}=M e, R^{2}=H, X=O$
 e; $R^{1}=R^{2}=H, X=O$
 $\mathrm{f} ; \quad \mathrm{R}^{\mathbf{1}}=\mathrm{Me}, \mathrm{R}^{\mathbf{2}}=\mathrm{CH}(\mathrm{Ph}) \mathrm{CH}_{2} \mathrm{COMe}, \mathrm{X}=\mathrm{O}$

